
SOME MOTIVATION, SOME RAMBLING

TIMOTHY DE DEYN

The following is an excerpt from the introductory part of my PhD thesis. It is
written in somewhat increasing levels of abstraction and difficulty, although most
parts restart a bit gentler. This way, anyone should, hopefully, gain something from
these ramblings.

(Algebraic) geometry. What actually is geometry? A short, rough answer,
according to ChatGPT at least, could be

‘Geometry is the branch of mathematics that studies shapes, their properties,
and their relationships in space. It deals with concepts such as points, lines,
angles, surfaces, and solids.’

In short, the study of geometric objects. Of course, this raises an obvious follow-up
question: what is a geometric object?

When posing this question to my sister, she thought of points, lines, triangles,
squares or cubes; objects typical in (planar) Euclidean geometry, which is how most
people first encounter geometry in school. These objects have the benefit of being
easy to visualise.

Of course, there is more to life than Euclidean geometry. Leaving the axioms
of flat Euclidean geometry behind, other types of interesting phenomena appear;
space can be curved. For example, to describe the theory of gravity in Einstein’s
general relativity, physicists make use of four-dimensional curved spaces to model
the geometry of space-time (three space dimensions and one time dimension). These
types of four-dimensional spaces are not easily visualised, but that does not make
them any less real. They describe how nature works. A more down-to-earth example:
the shortest path between two points on a map of the Earth is not a straight line
precisely because the Earth is curved.

In algebraic geometry one studies geometric objects that are given by solutions
to polynomial equations (locally at least). These solution sets are known as affine
varieties. Using these as basic building blocks we can construct more general types
of varieties by ‘gluing’ together affine ones. For example, gluing the two lines along
a point on each of them gives a shape in the form of a cross.

. and . gluing−−−−→ .
As an example of an affine variety, let f(x, y) be a polynomial in two variables. By
looking at its zero set we can associate to it a curve in a plane. That is, we look at
the set

{pt in plane | f(pt) = 0}.
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Taking the polynomial to be y2 − x3 + x and looking at points in the real plane R2

we obtain the following zero set

x

y

Curves of the above type are known as elliptic curves. They admit a special structure
as they have an addition on their set of points, an algebraic operation similar to
the addition of integers. However, we need not only restrict to real solutions. We
could exchange the field R by any finite field, an algebraic structure similar to the
real numbers but with only a finite number of elements. The curve would then
consist of a finite set of points, as the plane over a finite field only consists of a
finite number of points; not what one would normally think of as a curve. Looking
at elliptic curves over finite fields might seem silly, but the extra structure of an
addition on their points has very important real world applications through elliptic
curve cryptography.

The beauty of algebraic geometry is that we can describe these geometric objects
purely algebraically. Namely, to a plane curve we can associate a commutative ring
by looking at all the ‘regular functions’ on the curve. A ring is an algebraic structure
consisting of elements that can be added and multiplied, just as we can do with
integers or real numbers. Concretely, this ring of regular functions can be given as
the quotient ring

R[x, y]/(f)

of the real polynomial ring in two variables quotiented by the ideal generated by
f , i.e. the subset of the polynomial ring containing all the multiples of f . It is
commutative as the two variables x and y commute with each other, i.e. the order
in which they are written does not matter

xy = yx.

More generally, to any commutative ring we can associate a geometric object,
known as an affine scheme, and conversely to any affine scheme we can associate
a commutative ring. This leads to a beautiful dictionary between geometry and
commutative algebra

{affine schemes} {commutative rings}.

Γ(−)

Spec(−)



SOME MOTIVATION, SOME RAMBLING 3

The arrow Spec is the analogue of looking at the zero set of polynomials above,
whilst the arrow Γ corresponds to considering the ring of regular functions. Just as
with affine varieties, these affine schemes can be glued together to give more general
geometric objects known simply as schemes.

Noncommutative (algebraic) geometry. Not all rings are commutative, and in
fact many rings that one can naturally consider are noncommutative. For example,
for those who remember, matrix multiplication is noncommutative:(

0 0
1 0

)(
0 1
0 0

)
̸=

(
0 1
0 0

)(
0 0
1 0

)
.

So how geometric are noncommutative rings then? Noncommutative algebraic
geometry tries to answer this question, in some sense. As alluded to above, in
traditional algebraic geometry the focus is on studying the geometric properties of
spaces which are governed by commutative structures. Noncommutative algebraic
geometry on the other hand can be seen as both the geometric study of abstract
noncommutative structures and as the application of these abstract structures to
the study of geometric spaces.

Noncommutative geometry does not directly yield some ‘noncommutative space’
that can be easily visualised. Rather it gives us a collection of objects that behave
as if they were interacting with some would-be space. For this reason one may
wonder how geometric this really is. However, my point of view is that this is
irrelevant: they lead to interesting objects of study, whether they can be easily
visualised or not; they still interact with us in meaningful ways. I like the following
metaphor/analogy:

We cannot see a black hole as no light escapes its event horizon. Thus
we certainly cannot completely visualise it. However, of course, this does
not mean it is not there, that it cannot interact with us through different
means in meaningful ways (get close and you will find out).

Similarly, we may not be able to see or visualise noncommutative spaces in the
same way as we can the more common ‘commutative spaces’. This does, however,
not mean that they cannot interact with us in meaningful ways, and through that
interaction give us a better understanding of the mathematical landscape.

One way of thinking of a noncommutative space is as some structure that behaves
as if it were interacting with some would-be space. To any variety, or more generally
any scheme, we can associate objects called (quasi-coherent) sheaves that ‘live’ over
it. In a sense that can be made precise, understanding this collection of sheaves is
enough to recover the geometry of the variety over which they live. Together they
form what is called a category, a collection of objects and arrows between the objects
dictating how they relate to each other. Thus, this category contains the geometric
information of the variety. We can therefore posit that a noncommutative space is a
‘nice enough’ category that behaves as if it was obtained from some would-be space.
Depending on the specific context, the exact definition of ‘nice enough’ will change.

Resolutions of singularities. Not all varieties are created equal. Some are better
behaved than others. In mathematics one of the big guiding questions in any branch
is ‘can we classify all objects up to some notion of sameness?’. A concrete instance
of this in algebraic geometry is ‘can we classify all varieties up to isomorphism?’
However, if we want to classify all varieties, which is a difficult task, it might be
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worthwhile to start classifying those varieties which are at least a bit better behaved
and ask ourselves the question how much the ‘good’ and ‘bad’ ones differ. For
example, let us look at the curve defined by the polynomial y2 − x3 − x2. It is
known as a nodal cubic.

x

y

Clearly the origin looks different from the other points; the curve intersects itself
there. For a point distinct from the origin, we can draw a unique tangent line at
that point, a unique linear approximation of the curve. However, at the origin we
cannot. There are two different lines approximating the curve at the origin.

x

y

x

y

This observation reflects the fact that the origin is a singular point of the curve
whilst all the other points are smooth. Smooth points are better behaved, and
therefore smooth curves, where all points are smooth, or more generally smooth
varieties, are desirable.

There is a procedure, a type of surgery we can do, known as a resolution of singu-
larities, by which we can nicely approximate a singular variety by a smooth variety,
thereby getting rid of the ‘badly behaved’ points. For a curve this approximation
would mean, amongst other things, that the singular and smooth curve have to be
the same except for a finite number of points. For example, we can resolve the nodal
cubic above by ‘blowing up the origin’, essentially this separates the two tangent
lines at the origin. Almost all points stay the same, except that the origin gets
replaced by two points.

7→
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Noncommutative resolutions. Often in order to better understand a mathem-
atical object it is beneficial to associate invariants to it. Roughly speaking this
is a characteristic of the object that remains unchanged under certain operations
or transformations. For example, the colour of an object does not change when
we move it through space. These invariants could themselves be other (hopefully
simpler) mathematical objects, but could also be something as simple as a number.
One tool kit to make such invariants is homological algebra. It allows us to associate
algebraic objects as invariants through defining what is called (co)homology. For
example, through (co)homology we can detect ‘holes’ in surfaces. A torus (in
less mathematical lingo, a doughnut) has a hole in it, whilst a sphere does not.
(Co)homology can detect this, it will give a one for the torus and a zero for the
sphere.

‘hole’
‘no hole’

Calculating invariants is where noncommutative geometry can be of use. The
idea of using noncommutative structures to resolve singular varieties and compute
relevant invariants appeared quite early on in physics1, see e.g. [BL01]. Around
the same time noncommutative resolutions started to appear in pure mathematics,
precursors would be [KV00, Lun01, BKR01]. The most elegant application, in my
opinion, of noncommutative resolutions is the proof of the Bondal–Orlov conjecture
in dimension three by Van den Bergh [VdB04]. To show that two commutative
resolutions are the same, he related them both to noncommutative resolutions of
which it is easier to show that they are the same.

In homological algebra, one constructs algebraic invariants by considering se-
quences of objects. For example, let R be a ring and M be an object with which
the ring interacts in a suitable way (an R-module). To associate invariants to M
one takes a nice resolution of this object, i.e. a sequence of arrows

· · · → Fn → · · · → F2 → F1 → F0 → M → 0,

with the Fi of a specific form (‘projective’), that ‘fit together’ nicely; in mathematical
lingo: the sequence is exact. It would be nice if this sequence could be taken to
be finite, that is Fn = 0 for large enough n. After all, finite is usually easier than
infinite. Unfortunately, this is not always possible, and this is precisely related to
the idea of being smooth. For a ‘nice enough’ commutative ring we can find for
any such object M a finite resolution if and only if its associated affine scheme is
smooth.

However, can we add extra objects to the category, so that it is always possible
to construct such a finite sequence? This is exactly what a categorical resolution is
supposed to do; to enlarge a category, in a suitable way, and make it smooth.

1We should mention that another form of noncommutative geometry, à la Connes, has also
found inspiration/applications in physics and arrived earlier. As this uses operator algebras, it has
a different flavour and we do not consider it here.
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